skip to main content


Search for: All records

Creators/Authors contains: "Terent'ev, Alexander O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. How far can we push the limits in removing stereoelectronic protection from an unstable intermediate? We address this question by exploring the interplay between the primary and secondary stereoelectronic effects in the Baeyer–Villiger (BV) rearrangement by experimental and computational studies of γ-OR-substituted γ-peroxylactones, the previously elusive non-strained Criegee intermediates (CI). These new cyclic peroxides were synthesized by the peroxidation of γ-ketoesters followed by in situ cyclization using a BF 3 ·Et 2 O/H 2 O 2 system. Although the primary effect (alignment of the migrating C–R m bond with the breaking O–O bond) is active in the 6-membered ring, weakening of the secondary effect (donation from the OR lone pair to the breaking C–R m bond) provides sufficient kinetic stabilization to allow the formation and isolation of stable γ-hydroperoxy-γ-peroxylactones with a methyl-substituent in the C6-position. Furthermore, supplementary protection is also provided by reactant stabilization originating from two new stereoelectronic factors, both identified and quantified for the first time in the present work. First, an unexpected boat preference in the γ-hydroperoxy-γ-peroxylactones weakens the primary stereoelectronic effects and introduces a ∼2 kcal mol −1 Curtin–Hammett penalty for reacquiring the more reactive chair conformation. Second, activation of the secondary stereoelectronic effect in the TS comes with a ∼2–3 kcal mol −1 penalty for giving up the exo-anomeric stabilization in the 6-membered Criegee intermediate. Together, the three new stereoelectronic factors (inverse α-effect, misalignment of reacting bonds in the boat conformation, and the exo-anomeric effect) illustrate the richness of stereoelectronic patterns in peroxide chemistry and provide experimentally significant kinetic stabilization to this new class of bisperoxides. Furthermore, mild reduction of γ-hydroperoxy-γ-peroxylactone with Ph 3 P produced an isolable γ-hydroxy-γ-peroxylactone, the first example of a structurally unencumbered CI where neither the primary nor the secondary stereoelectronic effect are impeded. Although this compound is relatively unstable, it does not undergo the BV reaction and instead follows a new mode of reactivity for the CI – a ring-opening process. 
    more » « less
  2. Abstract

    The instability of hydroxy peroxyesters, the elusive Criegee intermediates of the Baeyer–Villiger rearrangement, can be alleviated by selective deactivation of the stereoelectronic effects that promote the 1,2‐alkyl shift. Stable cyclic Criegee intermediates constrained within a five‐membered ring can be prepared by mild reduction of the respective hydroperoxy peroxyesters (β‐hydroperoxy‐β‐peroxylactones) which were formed in high yields in reaction of β‐ketoesters with BF3⋅Et2O/H2O2.

     
    more » « less
  3. Abstract

    The instability of hydroxy peroxyesters, the elusive Criegee intermediates of the Baeyer–Villiger rearrangement, can be alleviated by selective deactivation of the stereoelectronic effects that promote the 1,2‐alkyl shift. Stable cyclic Criegee intermediates constrained within a five‐membered ring can be prepared by mild reduction of the respective hydroperoxy peroxyesters (β‐hydroperoxy‐β‐peroxylactones) which were formed in high yields in reaction of β‐ketoesters with BF3⋅Et2O/H2O2.

     
    more » « less
  4. Abstract

    The value of stereoelectronic guidelines is illustrated by the discovery of a convenient, ozone‐free synthesis of bridged secondary ozonides from 1,5‐dicarbonyl compounds and H2O2. The tetraoxane products generally formed in reactions of carbonyl and dicarbonyl compounds with H2O2were not detected because the structural distortions imposed on the tetraoxacyclohexane subunit in [3.2.2]tetraoxanonanes by the three‐carbon bridge leads to the partial deactivation of anomeric effects. The new procedure is readily scalable to produce gram quantities of the ozonides. This reaction enables the selective preparation of ozonides without the use of ozone.

     
    more » « less